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This paper presents a hypersingular integral equation for acoustic radiation in a subsonic
uniform flow. The work is motivated by the need for a normal-derivative integral equation
to be used in the Burton and Miller method for overcoming the non-uniqueness difficulty
in the boundary integral formulation. Although the non-uniqueness difficulty in the
conventional Helmholtz integral formulation has been well studied before, it is shown in
this paper that this difficulty becomes more severe in the presence of a mean flow. A
generalized normal-derivative operator is defined to derive the hypersingular integral
equation. Regularization of the hypersingular kernels is performed to render the integral
equation numerically integrable. Theoretical derivation is first given for a general
three-dimensional formulation. The resulting hypersingular integral equation is then
reduced to the axisymmetric case for numerical implementation. Numerical examples at
relatively high frequencies and different Mach numbers are given to verify the formulation.
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1. INTRODUCTION

Numerical simulation of sound radiation and scattering from structures submerged in a
non-uniform flow field is an important topic in aeroacoustics. One application example
in industry is the prediction of noise radiating from turbofan inlets of commercial aircraft
engines in steady flight. So far, such numerical simulation has been performed by using
the finite element method (FEM) [1–4] or the coupled finite element/boundary element
method (FEM/BEM) [5, 6]. When the FEM is used alone, the numerical discretization is
truncated somewhere in the far field, and the Sommerfeld radiation condition is
approximated by using some kinds of infinite elements or the wave envelope elements [1–4].

On the other hand, the coupled FEM/BEM uses the FEM only in the non-uniform flow
region. The Sommerfeld radiation condition is automatically satisfied when the BEM is
attached to the FEM to model the acoustic radiation into the infinite, uniform flow region.
The coupling between the FEM and the BEM is achieved by converting the BEM model
into a radiation admittance matrix to be used as a boundary condition on the exterior
boundary of the FEM model [6]. It should be noted that the admittance matrix created
by the BEM is fully populated, and hence, represents a non-local boundary condition.
Although theoretically the admittance matrix can better represent the radiation condition,
it increases the bandwidth of the original FEM matrix. A variable bandwidth matrix solver
(or skyline solver) may be used to reduce the memory storage and to speed up the solution
process. An important feature of the coupled FEM/BEM is that the FEM discretization
is confined to the non-uniform flow region only, which can be determined relatively easily
once the flow field is known. For a slender structure, the non-uniform flow is confined in
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Figure 1. The non-uniqueness difficulty at M=0.

a small region. Under such circumstances, the FEM discretization can be reduced to a
minimum extent.

It is well known that the BEM based on the conventional Helmholtz integral equation
fails to yield a unique solution at certain characteristic frequencies [7, 8]. This problem
becomes much more severe in the presence of a mean flow. To demonstrate this difficulty,
a BEM mesh for an imaginary sphere of radius r= a submerged in a uniform flow is
constructed by putting two out-of-phase point sources inside the sphere to create an
analytical dipole solution. The velocity boundary condition on the imaginary sphere is
generated by differentiating the dipole solution. Then the BEM solution at any nodal point
on the boundary can be compared to the analytical dipole solution. Figure 1 shows such
a comparison under the no-flow condition (i.e., Mach number M=0). The solid line in
the figure represents the BEM solution at one point on the sphere surface and the dash
line represents the corresponding analytical solution. As expected, the BEM solution fails
to yield a unique solution at ka= p, 4·493, 5·763, 2p . . . etc., where k is the wavenumber.
To see the effect of the mean flow, the Mach number is raised to M=0·5 and the result

Figure 2. The non-uniqueness difficulty at M=0·5.
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is shown in Figure 2. Comparing the two figures, one can easily see that Figure 2 has a
lot more characteristic frequencies than Figure 1 in the same frequency range. As pointed
out in reference [6], the frequency of the acoustic solution in a mean flow seems to be
amplified by a factor of 1/(1−M2). More severe non-uniqueness phenomena should be
expected as the Mach number goes up.

To overcome the non-uniqueness difficulty in the presence of a mean flow, the
theoretically robust formulation by Burton and Miller [8] is chosen. The original Burton
and Miller method uses a linear combination of the Helmholtz integral equation and its
normal derivative integral equation. Although each individual integral equation has its
own characteristic frequencies, a linear combination of the two integral equations does
yield a unique solution at all frequencies if the coupling constant is a pure imaginary
number [8]. In the presence of a mean flow, the Helmholtz integral equation is replaced
by a direct boundary integral equation developed recently by Wu and Lee [9]. A
generalized normal derivative operator is then applied to this integral equation. It should
be noted that the resulting generalized normal derivative integral equation is hypersingular.
Regularization of the hypersingular integral is done by following the procedure originally
developed by Krishnasamy et al. [10]. In this paper, a general three-dimensional
formulation is first presented. The three-dimensional formulation is then reduced to the
axisymmetric case for numerical implementation. Because the hypersingular integral
equation requires the C1 continuity condition at the collocation point, the Burton and
Miller method is applied to the mid node of each isoparametric quadratic element only.
This ‘‘reduced’’ version of the Burton and Miller method has been shown to be effective
by Ingber and Hickox [11]. Several numerical examples at different Mach numbers and
frequencies are given to verify the formulation.

2. THREE-DIMENSIONAL FORMULATION

The governing differential equation for steady-state linear acoustics in a uniform flow
is [12, 13]

92f+ k2f−2ikM 1f/1x1 −M2 12f/1x2
1 =0, (1)

where f is the velocity potential, k is the wavenumber, M is the Mach number of the
uniform flow, i=z−1, and the uniform flow is assumed to be in the positive x1 direction.
In equation (1), the e+ivt convention is adopted, where v is the angular frequency. For a
radiation problem in an infinite domain V, the ‘‘Helmholtz-type’’ boundary integral
equations for equation (1) are given as follows [9]:

For P $V,

4pf(P)=gS

G01f

1n
−2ikMfn1 −M2 1f

1x1
n11 dS−gS 01G

1n
−M2 1G

1x1
n11f dS. (2)

For P $S,

[4p−C0(P)]f(P)=gS

G01f

1n
−2ikMfn1 −M2 1f

1x1
n11 dS

−gS 01G
1n

−M2 1G
1x1

n11f dS. (3)
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In both equations, P is the collocation point, S is the boundary surface, G is the Green’s
function derived from the adjoint operator of equation (1), n is the unit normal vector on
S directing away from the acoustic domain, n1 is the x1 component of the vector n, and
C0(P) is a coefficient that depends on the location of P. The explicit expressions for G and
C0(P) are

G=
e−ik{z(x1 − xP

1)2 + (1−M2)[(x2 − xP
2)2 + (x3 − xP

3)2]+M(x1 − xP
1)}/(1−M2)

z(x1 − xP
1)2 + (1−M2)[(x2 − xP

2)2 + (x3 − xP
3)2]

, (4)

and

C0(P)=gS 01G0

1n
−M2 1G0

1x1
n11 dS, (5)

respectively, where the co-ordinates without a superscript are the co-ordinates of any
surface point Q, and those with a superscript P are the co-ordinates of the collocation point
P. The meaning of the Green’s function (derived from the adjoint operator) is the solution
due to a point source of strength 4p at P in a uniform flow moving in the negative x1

direction, although the flow of the physical problem is indeed in the positive x1 direction.
In equation (5), G0 is the ‘‘static’’ Green’s function, that is,

G0 =G =k=0 =
1

z(x1 − xP
1)2 + (1−M2)[(x2 − xP

2)2 + (x3 − xP
3)2]

. (6)

It is noticed that the first integral in equation (2) contains only the weakly singular kernel
G, and hence, produces no jump when P is approaching the boundary S from V. The
second integral, however, does produce a jump. The jump of a singular integral is the
contribution due to integration over an infinitesimal area on S surrounding P when P is
approaching the boundary. Comparing equations (2) and (3), one can easily construct a
jump theorem as follows:

Jump theorem: For any smooth density function s defined on S, the jump of

gS 01G
1n

−M2 1G
1x1

n11s dS

as P approaches S from V is −C0(P)s(P).
Since the derivatives of G with respect to the co-ordinates of P are simply the negatives

of the corresponding derivatives of G with respect to the co-ordinates of Q, one has the
following corollary from the jump theorem.

Corollary: For any smooth density function s defined on S, the jump of

gS 01G
1nP −M2 1G

1xP
1
nP

11s dS

as P approaches S from V is C0(P)s(P).
To derive the normal derivative integral to be used in the Burton and Miller formulation,

a generalized normal-derivative operator is first defined, (1/1nP −M2(1/1xP
1)nP

1), and this
operator is applied to equation (2) (where P is still in the domain V). Doing so yields

4p01f

1nP −M2 1f

1xP
1
nP

11 bP$V

=gS 01G
1nP −M2 1G

1xP
1
nP

1101f

1n
−2ikMfn1 −M2 1f

1x1
n11 dS
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−gS 0 1

1nP −M2 1

1xP
1
nP

1101G
1n

−M2 1G
1x1

n11f dS. (7)

One then lets P approach the surface S and applies the jump corollary to the first integral
of equation (7). For P$S, the ‘‘normal-derivative’’ integral equation becomes

[4p−C0(P)]$1f

1nP (P)−M2 1f

1xP
1
(P)nP

1%+C0(P)[2ikMnP
1f(P)]

=gS 01G
1nP −M2 1G

1xP
1
nP

1101f

1n
−2ikMfn1 −M2 1f

1x1
n11 dS

−=gS 0 1

1nP −M2 1

1xP
1
nP

1101G
1n

−M2 1G
1x1

n11f dS (8)

where =f S represents a hypersingular integral that should be interpreted only in the
Hadmard finite-part sense. Notice that the singularity of the first integral of equation (8)
is in the same order as that of the second integral of equation (3). It has been shown in
reference [9] that such a singularity is of the order of 1/r only (not 1/r2), where r is the
distance between P and Q. Numerical integration of the 1/r singularity can be easily done
by a simple polar co-ordinate transformation. The kernel of the second integral of equation
(8) (the hypersingular integral), however, is in the order of 1/r3 and requires special
treatment. To do this, one breaks the surface S into two regions: the singular region DS
and the non-singular region S−DS. The singular region DS is a small (but finite) region
that contains the singular point P, and the non-singular region S−DS represents the rest
of the boundary surface. Now attention is focused on the hypersingular integral over DS.
To regularize this integral, one first subtracts the static Green’s function G0 from the
Green’s function G and then adds it back. This procedure has been routinely used as the
first step in regularizing hypersingular integral equations (Krishnasamy et al. [10], Chien
et al. [14]). The hypersingular integral over DS becomes

=gDS 0 1

1nP −M2 1

1xP
1
nP

1101G
1n

−M2 1G
1x1

n11f dS

=gDS 0 1

1nP −M2 1

1xP
1
nP

1101(G−G0)
1n

−M2 1(G−G0)
1x1

n11f dS

+=gDS 0 1

1nP −M2 1

1xP
1
nP

1101G0

1n
−M2 1G0

1x1
n11f dS. (9)

Due to cancellation of the singularity between G0 and G, the first integral on the right side
of equation (9) is non-singular. Although the last integral is still hypersingular, the
singularity is now passed to the ‘‘static’’ Green’s function G0, which has a much simpler
form than G. By subtracting and adding back the first two terms of the Taylor series
expansion of f about point P, the last integral of equation (9) becomes
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=gDS 0 1

1nP −M2 1

1xP
1
nP

1101G0

1n
−M2 1G0

1x1
n11f dS

=gDS 0 1

1nP −M2 1

1xP
1
nP

1101G0

1n
−M2 1G0

1x1
n116f−f(P)−

1f

1xk
(P)[xk − xk (P)]7 dS

+f(P) =gDS 0 1

1nP −M2 1

1xP
1
nP

1101G0

1n
−M2 1G0

1x1
n11 dS

+−gDS 0 1

1nP −M2 1

1xP
1
nP

1101G0

1n
−M2 1G0

1x1
n1161f

1xk
(P)[xk − xk (P)]7 dS, (10)

where f− represents a Cauchy principal value (CPV) integral. One should notice that this
step does require the C1 continuity condition on the variable f at the collocation point
because the first order derivative of f at P is being used. With the subtraction of the first
two Taylor series expansion terms, the integrand of the first integral on the right side of
equation (10) is in the order of 1/r, which is only weakly singular. Regularization of the
other two integrals on the right side of equation (10) requires the use of Stokes’ theorem
[10] and this procedure is given in Appendix A. With the results of Appendix A, equation
(10) becomes

=gDS 0 1

1nP −M2 1

1xP
1
nP

1101G0

1n
−M2 1G0

1x1
n11f dS

=gDS 0 1

1nP −M2 1

1xP
1
nP

1101G0

1n
−M2 1G0

1x1
n116f−f(P)−

1f

1xk
(P)[xk − xk (P)]7 dS

+
1f

1xi
(P)bi gDS 01G0

1nP −M2 1G0

1xP
1
nP

11ni dS

+$1f

1n
(P)−M2 1f

1x1
(P)nP

1% gDS 01G0

1n
−M2 1G0

1x1
n11 dS

−f(P)bjbinP
j orij GC

1G0

1xi
dxr −

1f

1xk
(P)bjbinP

j orij GC

1G0

1xi
[xk − xk (P)] dxr

−
1f

1xi
(P)bjbinP

j orji GC

G0 dxr , (11)

where b1 =1−M2, b2 = b3 =1, orij is the alternating symbol, C is the contour along the
edge of DS, and the summation convention is used for repeated indices.

Substituting equation (11) into equation (9) and then equation (9) into equation (8), one
finally has the regularized ‘‘normal derivative’’ integral equation for acoustic radiation in
a mean flow:
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[4p−C0(P)]$1f

1n
(P)−M2 1f

1x1
(P)nP

1%+C0(P)[2ikMnP
1f(P)]

=gS 01G
1nP −M2 1G

1xP
1
nP

1101f

1n
−2ikMfn1 −M2 1f

1x1
n11 dS

−gS−DS 0 1

1nP −M2 1

1xP
1
nP

1101G
1n

−M2 1G
1x1

n11f dS

−gDS 0 1

1nP −M2 1

1xP
1
nP

1101(G−G0)
1n

−M2 1(G−G0)
1x1

n11f dS

−gDS 0 1

1nP −M2 1

1xP
1
nP

1101G0

1n
−M2 1G0

1x1
n116f−f(P)−

1f

1xk
(P)[xk − xk (P)]7 dS

−
1f

1xi
(P)bi gDS 01G0

1nP −M2 1G0

1xP
1
nP

11ni dS

−$1f

1n
(P)−M2 1f

1x1
(P)nP

1% gDS 01G0

1n
−M2 1G0

1x1
n11 dS

+f(P)bjbinP
j orij GC

1G0

1xi
dxr +

1f

1xk
(P)bjbinP

j orij GC

1G0

1xi
[xk − xk (P)] dxr

+
1f

1xi
(P)bjbinP

j orji GC

G0 dxr . (12)

It is to be noticed that all the integrals in equation (12) are either regular or at most weakly
singular.

3. AXISYMMETRIC FORMULATION

For an axisymmetric problem, one sets up a cylindrical co-ordinate system (r, u, z) and
lets the mean flow be in the z direction. One also lets uP =0 so that the generator of the
geometry lies in the xz-plane, although integration still has to be carried out over a true
three-dimensional boundary surface. The differential surface area in the integral equation
is evaluated by dS= r du dG, where G is the generator of the boundary surface S. One
then evaluates the following two inner products for an axisymmetric problem:

1f/1xk (P)[xk − xk (P)]= 1f/1z(P)[z− zP]+ 1f/1r(P)[r cos u− rP] (13)

and

1f/1xi (P)ni = 1f/1z(P)nz + 1f/1r(P)nr cos u. (14)
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These two inner products are used in the fourth and the fifth integrals of equation (12),
respectively. Substitute equations (13) and (14) into equation (12) and define three new
Green’s functions:

G	 =g
2p

0

G du, G	 0 =g
2p

0

G0 du, G	 1 =g
2p

0

G0 cos u du. (15–17)

Equation (12) then becomes

[4p−C0(P)]$1f

1n
(P)−M2 1f

1z
(P)nP

z %+C0(P)[2ikMnp
zf(P)]

=gG 01G	
1nP −M2 1G	

1zP nP
z101f

1n
−2ikMfnz −M2 1f

1z
nz1r dG

−gG−DG $g
2p

0 0 1

1nP −M2 1

1zP nP
z101G

1n
−M2 1G

1z
nz1 du% fr dG

−gDG $g
2p

0 0 1

1nP −M2 1

1zP nP
z101(G−G0)

1n
−M2 1(G−G0)

1z
nz1 du%fr dG

−gDG 0 1

1nP −M2 1

1zP nP
z101G	 0

1n
−M2 1G	 0

1z
nz1

×$f−f(P)−
1f

1z
(P)(z− zP)+

1f

1r
(P)rP%r dG

+
1f

1r
(P) gDG 0 1

1nP −M2 1

1zP nP
z101G	 1

1n
−M2 1G	 1

1z
nz1r2 dG

−(1−M2)
1f

1z
(P) gDG 01G	 0

1nP −M2 1G	 0

1zP nP
z1nzr dG

−
1f

1r
(P) gDG 01G	 1

1nP −M2 1G	 1

1zP nP
z1nrr dG

−$1f

1n
(P)−M2 1f

1z
(P)nP

z% gDG 01G	 0

1n
−M2 1G	 0

1z
nz1r dG

+f(P)bjbinP
j orij GC

1G0

1xi
dxr +

1f

1xk
(P)bjbinP

j orij G C

1G0

1xi
[xk − xk (P)] dxr
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Figure 3. (a) Contour integration for an axisymmetric problem; (b) right-hand rule for the contour integration.

+
1f

1xi
(P)bjbinP

j orji GC

G0 dxr , (18)

where

C0(P)=gG 01G	 0

1n
−M2 1G	 0

1z
nz1r dG. (19)

It should be noted that in the axisymmetric formulation, the singular surface element DS
in equation (12) becomes a belt-like ring surface, as shown in Figure 3(a). Therefore, the
contour C along the edge of DS actually consists of two circles, C1 and C2, at the top and
bottom of the ring, respectively. Since the contour and the normal vector have to follow
the right-hand rule (Appendix A), the direction of the contour integration is
counterclockwise (from u=0 to u=2p) along C1, and clockwise (from u=2p to u=0)
along C2. This rule of thumb will be much easier to see if one imagines that the ring is
cut to become a belt with two ends (see Figure 3(b)). The integration contributions along
the two cut ends cancel out because they are equal and opposite. Since the normal vector
of the belt surface is pointing inward (or away from the domain V), the direction of
integration along C1 and C2 should become clear if one uses the right-hand rule.

The three axisymmetric Green’s function of equations (15–17) can be evaluated by the
complete elliptic integrals of the first and second kinds. This procedure is briefly described
in Appendix B. A detailed discussion for the evaluation of G	 and G	 0 can be found in
reference [6]. Here, one simply summarizes the results:

G	 =e−ik	 M(z− zP)$G	 0 +g
2p

0

e−ik	 r̃ −1
r̃

du%, (20)

G	 0 =
4
R

F0p2, m1, G	 1 =
4
R 6 2

m2 $F0p2, m1−E0p2, m1%−F0p2, m17, (21, 22)
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where F(p/2, m) is the complete elliptic integral of the first kind, E(p/2, m) is the complete
elliptic integral of the second kind, and

k	 = k/(1−M2), r̃=z(z− zP)2 + (1−M2)[r2 + (rP)2 −2rrP cos u], (23, 24)

R=z(z− zP)2 + (1−M2)(r+ rP)2, m2 =4(1−M2)rrP/R2. (25, 26)

Equations (18) and (19) also contain first and second order derivatives of the Green’s
functions. This will in turn require derivatives of the elliptic integrals. The formulas for
the first order derivatives are

dF
dm

=$E0p2, m1−(1−m2)F 0p2, m1%>m(1−m2),
dE
dm

=$E0p2, m1−F 0p2, m1%>m.

(27, 28)

The second order derivatives will follow by differentiating the first order derivatives.
To apply the Burton and Miller method, one takes a linear combination of equation

(3) (in an axisymmetric form, see reference [6]) and equation (18) with a pure-imaginary
coupling constant i/k. Since equation (18) requires the C1 continuity condition at P, the
linear combination is taken only when P is collocated at the mid node of each three-noded
quadratic element. When P is at one of the two end nodes, only equation (3) is used. This
‘‘reduced’’ version of the Burton and Miller method has been shown to be effective by
Ingber and Hickox [11].

In numerical implementation, the generator G is discretized into a number of quadratic
line elements. The co-ordinates r and z as well as the variables f and 1f/1n at any point
on the boundary are interpolated by a set of quadratic shape functions as:

r(j)= s
3

a=1

Na (j)ra , z(j)= s
3

a=1

Na (j)za , f(j)= s
3

a=1

Na (j)fa , (29a–c)

1f

1n
(j)= s

3

a=1

Na (j)01f

1n1a

, (29d)

where Na (j) are the shape functions, j is the local co-ordinate, and the subscript a on r,
z, f, and 1f/1n denotes the corresponding nodal values.

Notice that the integral equations also contain the derivative terms, 1f/1z and 1f/1r.
Through a local co-ordinate transformation, the two derivatives can be converted into a
linear combination of the normal derivative and the tangential derivative. The result is

1f/1z=(nr /J) 1f/1j+ nz 1f/1n, 1f/1r=−(nz /J) 1f/1j+ nr 1f/1n, (30, 31)

where

J=z(dr/dj)2 + (dz/dj)2. (32)

The tangential derivative 1f/1j is obtained by differentiating the shape functions in
equation (29c). Therefore, only f and 1f/1n are retained as the nodal variables.

4. TEST CASES

The formulation given in the paper is also valid under the no-flow condition when M
is set to zero. Under such circumstances, equation (3) reduces to the Helmholtz integral
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Figure 4. Comparison between the BEM solution (solid line) and the analytical solution (dash line) for the
case of M=0.

equation, and the generalized normal derivative integral equation becomes the standard
normal derivative integral equation. The first test case is to overcome the non-uniqueness
difficulty presented previously in Figure 1, where two out-of-phase point sources were
placed inside an imaginary sphere surface. Eight quadratic elements with a total of 17
nodes are used to model this problem for frequencies up to ka=10. It is noted that the
Burton and Miller method is applied only at the mid node of each element. Therefore, there
are only 8 Burton and Miller equations among the total of 17 equations. The result is
shown in Figure 4. It is seen that all the non-uniqueness peaks are successfully removed.

The second test case is to overcome the non-uniqueness difficulty presented in Figure 2,
where M=0·5. Since the Mach number is higher, one uses 32 quadratic elements with a
total of 65 nodes to model the problem for frequencies up to ka=10. As shown in
Figure 5, all the non-uniqueness peaks are successfully removed. One also examines the
directivity pattern of the solution at ka=4·579, which is one of the characteristic
frequencies revealed in Figure 2. At this intermediate frequency, only 8 quadratic elements
with a total of 17 nodes are used to model the problem. The BEM solution (asterisks) on
the sphere surface is compared to the analytical solution (solid line) on a polar plot in
Figure 6. It should be pointed out that the mean flow (M=0·5) is moving to the right
in Figure 6. The mesh on the generator only produces the solution on the lower half of
the polar plot. The upper half is obtained by reflecting the lower half.

Figure 5. Comparison between the BEM solution (solid line) and the analytical solution (dash line) for the
case of M=0·5.
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Figure 6. Comparison between the BEM solution (() and the analyical solution (solid line) at M=0·5 and
ka=4·579.

In the third test case, the Mach number is raised to M=0·8 and the same radiation
problem is run for frequencies up to ka=10. 72 quadratic elements with a total of 145
nodes are used to model the problem. The comparison between the BEM solution and the
analytical solution is shown in Figure 7. The directivity pattern at ka=8 is also shown
in Figure 8. This problem is also solved by the conventional CHIEF method [6, 7]. The
same accuracy is obtained by using six to twelve CHIEF points.

5. CONCLUSIONS

A generalized normal derivative integral equation is derived for three-dimensional
acoustic radiation in a subsonic uniform flow. The hypersingular integral is regularized by
Stokes’ theorem. The three-dimensional formulation is then reduced to the axisymmetric
case for numerical implementation. The generalized normal derivative integral equation
is used in a reduced version of the Burton and Miller method to overcome the

Figure 7. Comparison between the BEM solution (solid line) and the analytical solution (dash line) for the
case of M=0·8.
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Figure 8. Comparison between the BEM solution (() and the analytical solution (solid line) at M=0·8 and
ka=8.

non-uniqueness difficulty. Numerical results at different Mach numbers and frequencies
show that this approach is effective. The hypersingular formulation derived in this paper
is also valid under the no-flow condition by setting M=0.

For all the axisymmetric test cases shown in this paper, the more conventional CHIEF
method can also produce the same accuracy as the Burton and Miller method if enough
CHIEF points are used. The CHIEF method is much easier to implement and is also less
computational intensive due to its simplicity. However, there is always an uncertainty when
deciding how many CHIEF points should be used. This really creates a burden on the user
side. Furthermore, for truly three-dimensional problems, the interior modes at higher
characteristic frequencies will become much more complicated. That means a
three-dimensional interior space may require more CHIEF points than an axisymmetric
interior area, even at the same frequency. Under such circumstances, the Burton and Miller
method should be a more practical choice because it provides a ‘‘black-box’’ solution and
requires no user input with regard to this matter.
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APPENDIX A: REGULARIZATION OF THE LAST TWO INTEGRALS OF
EQUATION (10)

Let I represent the second integral on the right side of equation (10), that is,

I==gDS 0 1

1nP −M2 1

1xP
1
nP

1101G0

1n
−M2 1G0

1x1
n11 dS. (A1)

Using the Cartesian tensor notation, equation (A1) is rewritten as

I=−bj binP
j =gDS

12G0

1xj 1xi
ni dS, i, j=1, 2, 3, (A2)

where b1 =1−M2, b2 = b3 =1 and the summation convention is used for repeated
indices. Since this integral is hypersingular, one tries to eliminate the singularity before P
approaches the boundary surface. Subtracting and adding back the term (12G0/1x2

i )nj , one
has

I=−bjbinP
j gDS 0 12G0

1xj 1xi
ni −

12G0

1x2
i

nj1 dS− bjbinP
j gDS

12G0

1x2
i

nj dS. (A3)

Recalling that G0 is the Green’s function (or a fundamental solution) of the adjoint
operator of equation (1) with k=0 when P is still in the domain, the second integral of
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equation (A3) is simply zero because bi 1
2G0/1x2

i =0 for P not exactly on S. One then
applies Stokes’ theorem [10],

gDS 01F
1xj

ni −
1F
1xi

nj1 dS= orij GC

F dxr , (A4)

where F is a function, orij is the alternating symbol, and C is the contour along the edge
of DS, to the first integral of equation (A3) with the substitution of F= 1G0/1xi . The
direction of the contour integration in Stokes’ theorem should be taken in such a way that
the contour C and the normal vector n follow the right-hand rule. Equation (A3) finally
reduces to a summation of several non-singular contour integrals:

I=−bjbinP
j orij GC

1G0

1xi
dxr . (A5)

Since the singularity has been removed, one can now take the limit as P approaches the
boundary surface S.

Let J represent the last integral of equation (10), that is,

J=−gDS 0 1

1nP −M2 1

1xP
1
nP

1101G0

1n
−M2 1G0

1x1
n1161f

1xk
(P)[xk − xk (P)]7 dS. (A6)

Rewriting equation (A6) as

J=−bjbinP
j

1f

1xk
(P) −gDS

12G0

1xj 1xi
[xk − xk (P)]ni dS, (A7)

or equivalently,

J=−bjbinP
j

1f

1xk
(P) −gDS

1

1xj $1G0

1xi
(xk − xk (P))%ni dS

+ bjbinP
j

1f

1xk
(P) djk gDS

1G0

1xi
ni dS, (A8)

where djk is Kronecker’s delta symbol. The second integral of equation (A8) is only weakly
singular because its kernel can be written as

bi (1G0/1xi )ni = 1G0/1n−M2(1G0/1x1)n1, (A9)

which is the same as the kernel in equation (5). The density distribution of that integral
can also be written as

bjnP
j

1f

1xk
(P) djk = bjnP

j
1f

1xj
(P)=$1f

1n
(P)−M2 1f

1x1
(P)nP

1%. (A10)

Therefore, equation (A8) becomes

J=−bjbinP
j

1f

1xk
(P) −gDS

1

1xj $1G0

1xi
(xk − xk (P))%ni dS



.   . . 324

+$1f

1n
(P)−M2 1f

1x1
(P)nP

1% gDS 01G0

1n
−M2 1G0

1x1
n11 dS. (A11)

To regularize the first integral of equation (A11), one subtracts and adds back the term

1

1xi $1G0

1xi
(xk − xk (P))%nj

while P is still in the domain. Doing so yields

J=−bjbinP
j

1f

1xk
(P) gDS 6 1

1xj $1G0

1xi
(xk − xk (P))%ni −

1

1xi $1G0

1xi
(xk − xk (P))%nj7 dS

− bjbinP
j

1f

1xk
(P) gDS

12G0

1x2
i

[xk − xk (P)]nj dS− bjbinP
j

1f

1xk
(P) dik gDS

1G0

1xi
nj dS

+$1f

1n
(P)−M2 1f

1x1
(P)nP

1% gDS 01G0

1n
−M2 1G0

1x1
n11 dS, (A12)

where the second integral is simply zero because bi 1
2G0/1x2

i =0 for P not exactly on S.
One then applies Stokes’ theorem (A4) to the first integral of equation (A12). This leads
to

J=−
1f

1xk
(P)bjbinP

j orij GC

1G0

1xi
[xk − xk (P)]dxr − bjbinP

j
1f

1xi
(P) gDS

1G0

1xi
nj dS

+$1f

1n
(P)−M2 1f

1x1
(P)nP

1% gDS 01G0

1n
−M2 1G0

1x1
n11 dS. (A13)

The second integral of equation (A13) still needs to be regularized before the limit (as P
approaches the boundary) is taken. Subtracting and adding back the term (1G0/1xj )ni , one
rewrites the second integral of equation (A13) as

gDS

1G0

1xi
nj dS=gDS 01G0

1xi
nj −

1G0

1xj
ni1 dS+gDS

1G0

1xj
ni dS. (A14)

Stokes’ theorem is now applied to the first integral of equation (A14) to get

gDS

1G0

1xi
nj dS= orji GC

G0 dxr +gDS

1G0

1xj
ni dS. (A15)

Substituting equation (A15) into equation (A13), and noting that

bjnP
j
1G0

1xj
=−bjnP

j
1G0

1xP
j
=−01G0

1nP −M2 1G0

1xP
1
nP

11, (A16)

one obtains
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J=−
1f

1xk
(P)bjbinP

j orij GC

1G0

1xi
[xk − xk (P)] dxr −

1f

1xi
(P)bjbinP

j orji GC

G0 dxr

+
1f

1xi
(P)bi gDS 01G0

1nP −M2 1G0

1xP
1
nP

11ni dS

+$1f

1n
(P)−M2 1f

1x1
(P)nP

1% gDS 01G0

1n
−M2 1G0

1x1
n11 dS, (A17)

where the last two integrals are only weakly singular. One can now take the limit as P
approaches the boundary.

APPENDIX B: EVALUATION OF THE AXISYMMETRIC GREEN’S FUNCTIONS

One first rewrites the static Green’s function G0 in equation (6) in terms of the cylindrical
co-ordinates (r, u, z). Recalling that uP =0. The result is

G0 =1/r̃, (B1)

where

r̃=z(z− zP)2 + (1−M2)[r2 + (rP)2 −2rrP cos u]. (B2)

Let u= p+2g, and one has cos u=−cos 2g=2 sin2 g−1. Equation (B2) then becomes

r̃=Rz1−m2 sin2 g, (B3)

where

R=z(z− zP)2 + (1−M2)(r+ rP)2, (B4)

and

m2 =4(1−M2)rrP/R2. (B5)

The Green’s function G	 0 in equation (16) then becomes

G	 0 =g
2p

0

G0 du=g
2p

0

1
r̃

du=
4
R g

p/2

0

dg

z1−m2 sin2 g
=

4
R

F 0p2, m1, (B6)

where

F0p2, m10g
p/2

0

dg

z1−m2 sin2 g
, (B7)

which is the complete elliptic integral of the first kind.
Similarly, the Green’s function G	 1 in equation (17) can be written as

G	 1 =g
2p

0

G0 cos u du=g
2p

0

cos u

r̃
du=

4
R g

p/2

0

2 sin2 g−1

z1−m2 sin2 g
dg

=
4
R g

p/2

0

2[1− (1−m2 sin2 g)]−m2

m2z1−m2 sin2 g
dg=

4
R 6 2

m2 $F 0p2, m1
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−E0p2, m1%−F 0p2, m17, (B8)

where

E0p2, m10g
p/2

0

z1−m2 sin2 g dg, (B9)

which is the complete elliptic integral of the second kind.
The complete elliptic integrals of the first and second kinds can be calculated by

Chebyshev polynomials [15] or by standard library calls (such as IMSL).


